
REQUIREMENTS

First we will create UNET network. This is a simple network with undirected links. Links have a cost

proportional to their length; the cost of each link is shown in parentheses. We will use the network

later to illustrate network analysis functions.

The CREATE_SDO_NETWORK operator given below creates all structures of a network and populates

required information into the USER_SDO_NETWORK_METADATA.

SQL statements given below populates data into UNET_NODES and UNET_LINKS tables.

-- Populate the node table

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (1, 'N1', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (1,3,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (2, 'N2', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (2,3,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (3, 'N3', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (4,3,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (4, 'N4', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (2,2,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (5, 'N5', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (3,2,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (6, 'N6', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (4,2,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (7, 'N7', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (1,1,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (8, 'N8', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (3,1,NULL), null, null));

INSERT INTO unet_nodes (node_id, node_name, geom) VALUES (9, 'N9', SDO_GEOMETRY (2001,

NULL, SDO_POINT_TYPE (4,1,NULL), null, null));

-- Populate the link table

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (1, 'L1', 1, 2, 1, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (1,3, 2,3)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (2, 'L2', 2, 3, 2, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (2,3, 4,3)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (3, 'L3', 3, 6, 1, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (4,3, 4,2)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (4, 'L4', 6, 9, 1, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (4,2, 4,1)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (5, 'L5', 9, 8, 1, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (4,1, 3,1)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (6, 'L6', 8, 7, 2, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (3,1, 1,1)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (7, 'L7', 7, 1, 2, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (1,1, 1,3)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (8, 'L8', 7, 4, 1.5, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (1,1, 2,2)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (9, 'L9', 4, 5, 1, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (2,2, 3,2)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (10, 'L10', 5, 6, 1, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (3,2, 4,2)));

INSERT INTO unet_links (link_id, link_name, start_node_id, end_node_id, cost, geom)

 VALUES (11, 'L11', 5, 8, 1, SDO_GEOMETRY (2002, NULL, NULL, SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (3,2, 3,1)));

CREATION OF THE MAIN FORM

• Create a new Project named NetworkAnalysis.

• Add a new JFrameForm named NetworkMain to the Project.

• Add required jar files into the Project to be able to wrok with Oracle.

• Design your main form as shown in Figure-1.

DATABASE PANEL

Add a JTabbaedPane into your main form window and name it “Database”. Name your form

elements as follows: Main form is separated into two parts. The top part holds various panels on

reached by clicking tabs and the bottom part holds a panel including text area for general output

messages. Top panel name is jPanelDB and inside this panel put a button named jBtnConnect. The

panel at the bottom named JPanelText holds a text area object named JTextOutput.

Figure-1 “Database” panel form design

Define Connection object “con” in the class NetworkMain.

Code Part-1 Definition of Connection object

Add action click method of “Connect” button and put required code to connect to database as shown

in Code Part-2. In this method you call openConnection and closeConnection methods define as

shown in Code Part-3.

Code Part-2 Connect button action method

Code Part-3 openConnection and closeConnection methods.

LOAD NETWORK PANEL

To create this panel add a new JPanel into the JTabbedPane and name the tab as “Load Network”. In
this panel add objects jPanelNetworkLoad, jTextNetworkName, jBtnLoadNetwork respectively as
shown in Figure-2.

Figure-2 “Load Network” panel form design.

Define Network object “unet” in the class NetworkMain as shown in Code Part-4.

Code Part-4 Definition of Connection object

Add action click method of “Load Network” button and put required code to load network as shown

in Code Part-5.

Code Part-5 “Load Network” button action method

Note: Loading a network in “read-only” mode still allows you to perform network updates in memory. However,

you will not be able to apply the changes to the database. The writeNetwork() method writes a network back to

the database. It actually takes only the changes you made to the memory-resident network and applies them to

the persistent copy stored in the database. The main use of the writeNetwork() method is to store the paths

calculated by the analysis functions into the path and path link tables in the database. To use that method, you

must first have loaded the network in “update” mode.

NETWORK ANALYSIS

To create this panel add a new JPanel into the JTabbedPane and name the tab as “Network Analysis”.
In this panel add objects jPanelNetworkAnalyse, jComboAnalyseType, jScrollPaneAnalyse respectively
as shown in Figure-3. Items you should add into the combo box are “Shortest Path, Nearest
Neighbors, All Nodes Within Some Distance”.

Figure-3 “Network Analysis” panel form design.

SHORTEST PATH
The JSrollPane object added into the jPanelNetworkAnalyse will show sub forms that appears when
you select an item from combo box. The sub forms are JPanelForm objects. So to add the firs sub
form add a new JPanelForm named formShortestPath. In this form add objects jComboStartNode,
jComboEndNode, jButtonShortestPath respectively as shown in Figure-4.

Figure-4 Form design for “Shortest Path” analysis.

Define Network, Connection and Path objects in the formShortestPath class. Design your constructor
method as shown in Code Part-6.

Code Part-6 formShortestPath class and it’s constructor method.

Add a new method named findShortestPath as shown in Code Part-7.

Code Part-7 “findShortestPath” method

Add action click method of “Explore” button and put required code as shown in Code Part-8. In this

method you call findShortestPath method.

Code Part-8 “Explore” button action method

To show the sub form “formShortestPath” in the JScrollPane write the necessary code for action
method of combobox in the NetworkMain class as shown in Code Part-9 and Code Part-10.

Code Part-9 Adding formShortestPath object in the NetworkMain class

Code Part-10 “jComboAnalyseType” combobox action method

Figure 5 shows the result of shortest path analysis between node 4 and node 3.

Figure-5 Shortest path analysis result

NEAREST NEIGHBORS
The nearestNeighbors() method returns an array of Path objects. Not only does it tell you who the
nearest nodes are, but it also tells you how to reach them.
Add a new JPanelForm named formNearestNeighbor. In this form add objects jComboStartNode,
jtxtNumberOfNeighbor, JButtonFindNeigbors respectively as shown in Figure-6.

Figure-6 Form design for “Nearest Neighbor” analysis.

Define Network, Connection and Path objects in the formNearestNeighbor class. Design your
constructor method as shown in Code Part-11.

Code Part-11 formNearestNeighbor class and it’s constructor method.

Add a new method named findNearestNeighbor as shown in Code Part-12.

Code Part-12 “findNearestNeighbor” method.

Add action click method of “Explore Neighbors” button and put required code as shown in Code Part-

13. In this method you call findNearestNeighbor method.

Code Part-13 “Explore Neighbors” button action method

To show the sub form “formNearestNeighbor” in the JScrollPane write the necessary code for action
method of combobox in the NetworkMain class as shown in Code Part-14 and Code Part-15.

Code Part-14 Adding formNearestNeighbor object in the NetworkMain class.

Code Part-15 “jComboAnalyseType” combobox action method.

Figure-7 shows the result of two nearest neighbors of node 4.

Figure-7 Nearest neighbors analysis result

FINDING ALL NODES WITHIN SOME DISTANCE

Another common network analysis operation selects nodes based on the distance that separates
them from a starting node. A typical example of using the withinCost() method is to find the network
nodes (road intersections) that are within a certain driving distance or driving time from a given
store.

Add a new JPanelForm named formNodesWithinDistance. In this form add objects
jCOmboStartNode, jtxtMaxDistance, jButtonFindNodesWithinDistance respectively as shown in
Figure-8.

Figure-8 Form design for “All Nodes Within Some Distance” analysis

Define Network, Connection, Path[] and Path objects in the formNearestNeighbor class. Design your
constructor method as shown in Code Part-16.

Code Part-16 formNodesWithinDistance class and it’s constructor method.

Add a new method named findNodesWithinDistance as shown in Code Part-17.

Code Part-17 “findNodesWithinDistance” method.

Add action click method of “Explore” button and put required code as shown in Code Part-18. In this

method you call findNodesWithinDistance method.

Code Part-18 “Explore” button action method

To show the sub form “formNodesWithinDistance” in the JScrollPane write the necessary code for
action method of combobox in the NetworkMain class as shown in Code Part-19 and Code Part-20.

Code Part-19 Adding formNodesWithinDistance object in the NetworkMain class.

Code Part-20 “jComboAnalyseType” combobox action method.

Lets find the nodes that are at a distance of less than three “cost units” from node N2 on the UNET
network (Figure-9)

Figure-9 All nodes within distance analysis result

CONSTRAINTS

The SystemConstraint class is a specific example of a network constraint. It lets you define a set of
constraints to limit the search space for any of the methods you have seen so far.

• MaxCost: The maximum cost.

• MaxDepth: The maximum search depth (the number of links in the paths).

• MaxDistance: The maximum geographical distance from the start node and any candidate
node (in other words, consider only those nodes within that distance from that start node)

• MaxMBR: Consider only those nodes that are inside the MBR.

• MustAvoidLinks: A list of links to avoid.

• MustAvoidNodes: A list of nodes to avoid.

Lets see how to set up a constraint that avoids nodes and limits the cost of any solution to “cost
units.”

To create this panel add a new JPanel into the JTabbedPane and name the tab as “Constraint”. In this
panel add objects . jCheckBoxCost, jCheckBoxAvoidNode, jtxtCost, jTextAvoidedNodes,
jButtonApplyConsttraint respectively as shown in Figure-10.

Figure-10 “Constraint” panel form design

Add Constraint object in the NetworkMain class as shown in Code Part-21.

Code Part-21 Adding constraint object in the NetworkMain class.

Add action click method of “Apply Constraint” button and put required code as shown in Code Part-

22.

Code Part-22 “jButtonApplyConstraint” button action method.

Now let’s add required code in formShortestPath class to make constraints available as shown in
CodePart-23.

Code Part-23 Changes on “formShortestPath” class and it’s constructor

Code Part-24 shows changes on findShortestPath method to apply constraints.

Code Part-24 Enabling constraints on findShortestPath method.

Code Part-25 shows changes on jButtonShortestPath button action method to apply constraints.

Code Part-26 shows changes on “jComboAnalyseType” combobox action method to apply
constraints.

In the Constraint section we only applied constraints on formShortestPath sub form. Please also
write codes in the same way to apply constraints in other two sub forms “formNodesWithinDistance”
and “formNodesWithinDistance”.

